- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
12
- Author / Contributor
- Filter by Author / Creator
-
-
Srinivas, Srivatsa (3)
-
Coles, Desmond (1)
-
Golsefidy, Alireza Salehi (1)
-
Golsefidy, S Alireza (1)
-
Huston, Peter (1)
-
Penneys, David (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We study random walks on various group extensions. Under certain bounded generation and bounded scaled conditions, we estimate the spectral gap of a random walk on a quasi-random-by-nilpotent group in terms of the spectral gap of its projection to the quasi-random part. We also estimate the spectral gap of a random-walk on a product of two quasi-random groups in terms of the spectral gap of its projections to the given factors. Based on these results, we estimate the spectral gap of a random walk on the -points of a perfect algebraic group in terms of the spectral gap of its projections to the almost simple factors of the semisimple quotient of . These results extend a work of Lindenstrauss and Varjú and an earlier work of the authors. Moreover, using a result of Breuillard and Gamburd, we show that there is an infinite set of primes of density one such that, if is a positive integer and is a perfect group and is a unipotent group, then the family of all the Cayley graphs of , , is a family of expanders.more » « lessFree, publicly-accessible full text available January 30, 2026
-
Golsefidy, Alireza Salehi; Srinivas, Srivatsa (, Journal of the European Mathematical Society)Suppose\operatorname{SL}_{2}(\mathbb{F}_{p})\times \operatorname{SL}_{2}(\mathbb{F}_{p})is generated by a symmetric setSof cardinalitynwherepis a prime number. Suppose the Cheeger constants of the Cayley graphs of\operatorname{SL}_{2}(\mathbb{F}_{p})with respect to\pi_{L}(S)and\pi_{R}(S)are at leastc_{0}, where\pi_{L}and\pi_{R}are the projections to the left and the right components of\operatorname{SL}_{2}(\mathbb{F}_{p})\times \operatorname{SL}_{2}(\mathbb{F}_{p}), respectively. Then the Cheeger constant of the Cayley graph of\operatorname{SL}_{2}(\mathbb{F}_{p})\times \operatorname{SL}_{2}(\mathbb{F}_{p})with respect toSis at leastcwherecis a positive number which only depends onnandc_{0}. This gives an affirmative answer to a question of Lindenstrauss and Varjú.more » « lessFree, publicly-accessible full text available November 7, 2025
-
Coles, Desmond; Huston, Peter; Penneys, David; Srinivas, Srivatsa (, Journal of Functional Analysis)null (Ed.)
An official website of the United States government
